Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 100: 37-42, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27594668

RESUMO

Tannerella forsythia is a bacteria associated with severe periodontal disease. This study reports identification and characterization of a membrane-associated serine protease from T. forsythia. The protease was isolated from T. forsythia membrane fractions and shown to cleave both gelatin and type I collagen. The protease was able to cleave both substrates over a wide range of pH values, however optimal cleavage occurred at pH 7.5 for gelatin and 8.0 for type I collagen. The protease was also shown to cleave both gelatin and type I collagen at the average reported temperature for the gingival sulcus however it showed a lack of thermal stability with a complete loss of activity by 60 °C. When treated with protease inhibitors the enzyme's activity could only be completely inhibited by serine protease inhibitors antipain and phenylmethanesulfonyl fluoride (PMSF). Further characterization of the protease utilized serine protease synthetic peptides. The protease cleaved N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide but not Nα-benzoyl-dl-arginine p-nitroanilide (BAPNA) or N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide indicating that the protease is a chymotrypsin-like serine protease. Since type I collagen is a major component in the gingival tissues and periodontal ligament, identification and characterization of this enzyme provides important information regarding the role of T. forsythia in periodontal disease.


Assuntos
Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Tannerella forsythia/enzimologia , Antipaína/metabolismo , Colágeno Tipo I/metabolismo , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Gelatina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Fluoreto de Fenilmetilsulfonil/metabolismo , Serina Proteases/química , Especificidade por Substrato , Temperatura
2.
J Mol Biol ; 255(5): 714-25, 1996 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-8636973

RESUMO

The structures of two ternary complexes of wheat serine carboxypeptidase II (CPD-WII), with a tetrapeptide aldehyde and a reaction product arginine, have been determined by X-ray crystallography at room temperature and -170 degrees. The peptide aldehydes, antipain and chymostatin, form covalent adducts with the active-site serine 146. The CPD-WII antipain arginine model has a standard crystallographic R-factor of 0.162, with good geometry at 2.5 A resolution for data collected at room temperature. The -170 degrees C model of the chymostatin arginine complex has an R-factor of 0.174, with good geometry using data to 2.1 A resolution. The structures suggest binding subsites N-terminal to the scissile bond. All four residues of chymostatin are well-localized in the putative S1 through S4 sites, while density is apparent only in S1 and S2 for antipain. In the S1 site, Val340 and 341, Phe215 and Leu216 form a hydrophobic binding surface, not a pocket, for the P1 phenylalanyl side-chain of chymostatin. The P1 arginyl of antipain also binds at this site, but the positive charge appears to be stabilized by additional solvent molecules. Thus, the hybrid nature of the S1 site accounts for the ability of CPD-WII to accept both hydrophobic and basic residues at P1. Hydrogen bonds to the peptide substrate backbone are few and are made primarily with side-chains on the enzyme. Thus, substrate recognition by CPD-WII appears to have nothing in common with that of the other families of serine proteinases. The hemiacetal linkages to the essential Ser146 are of a single stereoisomer with tetrahedral geometry, with an oxygen atom occupying the "oxyanion hole" region of the enzyme. This atom accepts three hydrogen bonds, two from the polypeptide backbone and one from the positively-charged amino group of bound arginine, and must be negatively charged. Thus, the combination of ligands forms an excellent approximation to the oxyanion intermediate formed during peptide hydrolysis. Surprisingly, the (R) stereochemistry at the hemiacetal linkage is opposite to that expected by comparison to previously determined structures of peptide aldehydes complexed with Streptomyces griseus proteinase A. This is shown to be a consequence of the approximate mirror symmetry of the arrangement of catalytic groups in the two families of serine proteases and suggests that the stereochemical course of the two enzymatic reactions differ in handedness.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Peptídeos/química , Triticum/enzimologia , Aldeídos , Sequência de Aminoácidos , Antipaína/química , Antipaína/metabolismo , Sítios de Ligação , Evolução Biológica , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato
3.
J Biol Chem ; 263(9): 4131-8, 1988 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-3346240

RESUMO

The precursor of mitochondrial aspartate aminotransferase accumulates in the cytosol of cultured chicken embryo fibroblasts if its import into mitochondria is inhibited by an uncoupling agent. However, its accumulation is limited by degradation with a half-life of only approximately 5 min (Jaussi, R., Sonderegger, P., Flückiger, J., and Christen, P. (1982) J. Biol. Chem. 257, 13334-13340). The aim of the present study was the characterization of the proteolytic system(s) responsible for this very rapid intracellular degradation. On depleting chicken embryo fibroblasts of ATP, the rate of degradation of the precursor was lowered by approximately 70%. Chicken embryo fibroblasts depleted of divalent metal ions showed a degradative activity of 10% of the initial value. Reconstitution of these cells with Mg2+ and Ca2+ increased the degradative activity from 10 to 107 and 24%, respectively. Thiol reagents almost completely prevented the degradation, whereas specific peptide inhibitors of cysteine proteases or inhibitors of intralysosomal proteolysis decreased the rate of degradation by only approximately 30%. Inhibitors of serine proteases had little effect. No rapid degradation of the precursor was observed in crude extracts of chicken embryo fibroblasts. The data indicate that the bulk of the precursor accumulated under conditions of import block is degraded by one or several cytosolic proteases dependent on ATP, Mg2+, and thiol groups of unknown localization, conceivably by proteolytic enzymes identical with or similar to one of the high molecular weight cytosolic proteases (Waxman, L., Fagan, J.M., Tanaka, K., and Goldberg, A. L. (1985) J. Biol. Chem. 260, 11994-12000). The rest of the precursor appears to be degraded by lysosomes.


Assuntos
Aspartato Aminotransferases/metabolismo , Precursores Enzimáticos/metabolismo , Mitocôndrias/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Antipaína/metabolismo , Embrião de Galinha , Citosol/enzimologia , Fibroblastos/ultraestrutura , Meia-Vida , Leupeptinas/metabolismo , Metilaminas/farmacologia , Monensin/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...